Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C32⋊C6

Direct product G=N×Q with N=C2×C4 and Q=C32⋊C6
dρLabelID
C2×C4×C32⋊C672C2xC4xC3^2:C6432,349

Semidirect products G=N:Q with N=C2×C4 and Q=C32⋊C6
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1(C32⋊C6) = C62.21D6φ: C32⋊C6/He3C2 ⊆ Aut C2×C472(C2xC4):1(C3^2:C6)432,141
(C2×C4)⋊2(C32⋊C6) = C2×He34D4φ: C32⋊C6/He3C2 ⊆ Aut C2×C472(C2xC4):2(C3^2:C6)432,350
(C2×C4)⋊3(C32⋊C6) = C62.36D6φ: C32⋊C6/He3C2 ⊆ Aut C2×C4726(C2xC4):3(C3^2:C6)432,351

Non-split extensions G=N.Q with N=C2×C4 and Q=C32⋊C6
extensionφ:Q→Aut NdρLabelID
(C2×C4).1(C32⋊C6) = C62.19D6φ: C32⋊C6/He3C2 ⊆ Aut C2×C4144(C2xC4).1(C3^2:C6)432,139
(C2×C4).2(C32⋊C6) = He37M4(2)φ: C32⋊C6/He3C2 ⊆ Aut C2×C4726(C2xC4).2(C3^2:C6)432,137
(C2×C4).3(C32⋊C6) = C62.20D6φ: C32⋊C6/He3C2 ⊆ Aut C2×C4144(C2xC4).3(C3^2:C6)432,140
(C2×C4).4(C32⋊C6) = C2×He33Q8φ: C32⋊C6/He3C2 ⊆ Aut C2×C4144(C2xC4).4(C3^2:C6)432,348
(C2×C4).5(C32⋊C6) = C2×He33C8central extension (φ=1)144(C2xC4).5(C3^2:C6)432,136
(C2×C4).6(C32⋊C6) = C4×C32⋊C12central extension (φ=1)144(C2xC4).6(C3^2:C6)432,138

׿
×
𝔽